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1. Introduction

There are countless ways in which the standard model could fit into a supersymmetric

framework. For the sake of phenomenology, a useful categorization is in terms of how

supersymmetry breaking is communicated to the observable particles. Gauge-mediated

supersymmetry breaking (GMSB) [1] assumes that SUSY breaking is communicated via

the standard model gauge group. This mechanism has several attractive features. In

particular, it makes calculable predictions for the soft parameters of the MSSM in terms

of a few parameters while naturally evading the tight constraints from flavor physics. It

also accommodates radiative electroweak symmetry breaking [2] and offers a solution to

the CP problem [3].

It is important to remember, however, that this is not a complete theory. It is only

meant to apply below the scale of SUSY-breaking. The hope is that it provides a successful

parameterization of our ignorance of physics at the higher scale, but this has recently been

called into question. In [4], for example, it was pointed out that the standard approach

omits a set of renormalizable interactions that are allowed by the symmetries, are consistent

with experiment, and lead to novel phenomenology. In this note, we explore another

generalization of ordinary gauge mediation that has previously been ignored. Specifically,

we consider a general, supersymmetric Higgsing of the mediating gauge group.

In a sense, this is not new at all because it is generally assumed that there is a super-

symmetric Higgsing of the mediating gauge group, both at the GUT scale and at the weak
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Figure 1: The sole one-loop diagram contributing to gaugino masses

scale. For a messenger scale much larger than the weak scale, the masses of the SU(2)W
gauge fields can be neglected. And the gauge fields with GUT-scale masses can be ignored

if the messenger scale is sufficiently small, but for models with a messenger scale near the

GUT scale, as in [5], they can be very important. Of course, gauge symmetry breaking

may also occur at an intermediate scale. For example, additional U(1)’s [6 – 11], which

arise naturally in SUSY-GUTs with large gauge groups and in string theory, typically have

intermediate Higgsing scales. In what follows, we will briefly review the standard treat-

ment of GMSB and the associated sparticle spectrum. We will then discuss how one can

approximate these results for much of parameter space, and we will show that these tech-

niques fail to capture the effects of interest here. Finally, we will present the leading-order

sparticle spectrum in standard GMSB for an arbitrary, supersymmetric Higgsing of the

gauge group, and comment on the results. The messier details of the calculation are left

for the appendix.

2. Standard gauge mediation

In the basic scenario (see [12] for a review), a set of chiral superfields, Φi and Φ̃i, are added

to a GUT-extended MSSM. They can all be taken to be 5 and 5̄ of SU(5), for example.

Note that this choice preserves gauge-coupling unification, is anomaly-free, and allows for

the superpotential term,

∆W =
∑

i

λiXΦ̃iΦi, (2.1)

where X = M + Fθ2 is a gauge-singlet background field. The index, i, is a flavor index.

Gauge indices are supressed. The non-zero F-component of the “spurion”, X, results in a

non-supersymmetric mass spectrum for our chiral superfields, which then act as messengers,

splitting masses of MSSM superfields through loops. Their contributions to MSSM gaugino

and scalar masses have been computed for the scenario described above and for some

generalizations [13 – 15].1 The gauginos get masses,

∆ma
1/2 =

αa

2π

F

M

∑

i

na(ri)g(xi), xi =

∣∣∣∣
F

λiM2

∣∣∣∣, (2.2)

from the diagram in figure 1, and the first eight diagrams of figure 5 give the scalar masses,

∆m2
0 =

∣∣∣∣
F

M

∣∣∣∣
2 ∑

a

(
αa

2π

)2

Ca(rQ)
∑

i

na(ri)f(xi, 0). (2.3)

1In principle, the two-loop effective potential of [16] contains these scalar masses and those presented

later in this paper. In practice, however, extracting such results is difficult with basic computational

resources in anything but the simplest theories.
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Figure 2: f(0, 0) = 1 = g(0), but g(1)/f(1, 0)1/2 ≈ 5/3

Much of the notation is the same as that of [14]. The index, a = 1, 2, 3, labels the

gauge group, αa = g2
a/4π, Ca(rQ) is the quadratic Casimir of the scalar field that is getting

mass, and na(ri) is the Dynkin index of the messenger representation. The extra argument

in the function, f(xi, 0), will be explained shortly.

Note that (2.2) is a mass, and (2.3) is a mass squared, so in the ratio of a gaugino and

a scalar mass, the factors of F/M cancel. And as one can see in figure 2, the functions,

g(x) and f(x, 0)1/2, deviate little from one over most of parameter space.2 This means that

ma
1/2/m0 primarily depends on the “effective messenger number”, Na ≡ 2

∑
i na(ri). With

the conventional normalization of the generators, na = 1/2 for fundamentals, so in the

simple case of SU(5) with fundamental messengers, the effective messenger number is the

number of messengers. This is one way in which measuring only a couple of soft parameters

of the MSSM could reveal something about the messenger sector. We will see, however,

that this simple picture can be modified when the mediating gauge group is Higgsed.

3. Analytic continuation to superspace

In the limit of small supersymmetry breaking, the results of the previous section can be

obtained in an entirely different way [17 – 19]. Consider a massless chiral superfield, Q, that

only couples to the messengers through gauge fields. The Lagrangian will have a term,

L ⊃

∫
d4θZQ(µ)Q†Q, (3.1)

where ZQ(µ) is the wave-function renormalization of Q at the scale µ. If this scale is below

the messenger scale, then ZQ(µ) = ZQ(µ,M †,M). Now comes the interesting part. The

idea is to replace M with the superfield, X = M + Fθ2. This new object, call it Z̃Q(µ),

has an expansion in powers of θ, which yields a mass for the scalars,

∆m2
0(µ) = −

∣∣∣∣
F

M

∣∣∣∣
2 ∂2 ln Z̃Q(µ)

∂ ln X∂ ln X†

∣∣∣∣
X=M

. (3.2)

2Note that xi cannot exceed one. This would give a tachyonic messenger, and there is nothing to stabilize

the field. In general, however, the UV completion can accommodate x > 1. The negative mass-squared

simply indicates that the true vacuum is elsewhere, and in that vacuum, there is a massive gauge field.
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Performing the derivatives, one finds agreement with (2.3) to O(x2) for x = F/M2 ≪ 1.

What we are interested in is the spectrum when we have chiral messengers and a

supersymmetric Higgsing. If we take ΛUV > M > mW > µ, then we have

ZQ(µ) = ZQ(ΛUV )

(
α(ΛUV )

α(M)

)2C(rQ)/b( α(M)

α(mW )

)2C(rQ)/b′(α(mW )

α(µ)

)2C′(rQ)/b′′

(3.3)

α−1(M) = α−1(ΛUV ) +
b

4π
ln

M †M

Λ2
UV

, (3.4)

α−1(mW ) = α−1(M) +
b′

4π
ln

m2
W

M †M
(3.5)

α−1(µ) = α−1(mW ) +
b′′

4π
ln

µ2

m2
W

. (3.6)

Making the substitution, M → X, and plugging into (3.2) gives a mass that depends on

mW , but only trivially. It only acts to give the correct running of the coupling to the scale,

µ. This should not be surprising since the method takes the gauge fields to be massless

above mW and infinitely massive below. In a sense, what we are interested in is a threshold

effect. The gauge messenger case, in which the spurion breaks the gauge group, is different

because the scale, mW = M , enters in the Grassman-parameter expansion. Perhaps there

is a clever way of approximating a non-trivial effect of a supersymmetric Higgsing, but we

will not pursue this further here. Instead, we perform the Feynman-diagram calculation.

4. Higgsed gauge mediation

We are interested in the effects of modifying the gauge sector of gauge mediation. In

particular, we allow for massive gauge fields coupled to both messengers and MSSM fields,

but do not study the gauge messenger scenario in which a gauge superfield has split masses.

4.1 Case 1 — G × U(1)′, a toy model

Starting with the simplest extension, consider the set of messenger fields, Φi and Φ̃i, as

in the introduction. Now let them be charged under an additional U(1)′ gauge symmetry

that is spontaneously broken. The desired spectrum is obtained if we add fields, Ψ and Ψ̃,

that are only charged under this U(1)′, and take the superpotential to be

∆W =
∑

i

λiXΦ̃iΦi + hT (Ψ̃Ψ − v2), X = M + Fθ2, (4.1)

where the field, T , is a singlet dynamical field, which, for our purposes, plays no role except

to give vevs to the added superfields. Suppressing all indices, this produces a massive vector

multiplet, (A, C, λ, χ), with supersymmetric mass mW = 2gv, where A is a gauge boson,

C is a real scalar field, λ is a gaugino, and χ is another Weyl fermion.

Turning to the radiative spectrum, the gauginos of the unbroken gauge group get the

standard one-loop masses (2.2) computed in [14], which we reproduce here:

∆ma
1/2 =

αa

2π

F

M

∑

i

na(ri)g(xi), (4.2)
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Figure 3: f(x, y) is plotted for small (a.) and large (b.) values of y.

where

g(x) =
1

x2
(1 + x) ln(1 + x) + (x → −x). (4.3)

The notation is discussed after (2.3). To leading order, the effect of the U(1)′ on the

gaugino spectrum is simply to add a gaugino of mass mW . The generalization to more

interesting gauge structure is trivial and will not be discussed further. Now if we couple

some set of chiral superfields, Q, that transform under the given gauge symmetry, their

scalar components will acquire radiative masses at two-loop order. The contribution from

G is as before [13, 14],

∆m2
0 =

∣∣∣∣
F

M

∣∣∣∣
2 ∑

a

(
αa

2π

)2

Ca(rQ)
∑

i

na(ri)f(xi, 0), (4.4)

where

f(x, 0) =
1 + x

x2

[
ln(1 + x) − 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x → −x). (4.5)

With a Higgsed mediating gauge group, there are ten relevant diagrams, which are shown

in figure 5. For our toy model, the contribution from the U(1)′ vector multiplet is

∆m2
0 =

∣∣∣∣
F

M

∣∣∣∣
2( α

2π

)2

C(rQ)
∑

i

n(ri)f(xi, y), y =

∣∣∣∣
mW

M

∣∣∣∣
2

, (4.6)

and C(rQ) and n(ri) are respectively the squared charges of Q and Φi under the U(1)′.

The function, f(x, y), is given in the appendix along with more details of the computation.

In figure 3, this function is plotted in the limits of large and small y. At small y, it is seen

to agree with the known result of figure 2. At large y, the kinematic suppression of the

amplitude is evident. More explicitly, we find

f(x, y ≪ 1) = f(x, 0) +

(
1

3
+

x2

30
+ O(x4)

)
y ln y + O(y) (4.7)

f(x, y ≫ 1) =
2

y
ln y + O

(
1

y

)
(4.8)
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4.2 Case 2 — Products of simple groups with degeneracy

When each factor of the mediating gauge group is simple and has a single supersymmetric

mass for all of its gauge superfields, the result is a simple extension of what was done in

the previous section. In fact, it is simply (4.4) with the substitution,

f(xi, 0) → f(xi, ya). (4.9)

4.3 Case 3 — Products of simple groups without degeneracy

In generalizing to an arbitrary supersymmetric Higgsing, the most obvious obstacle is that

the gauge field associated with a given generator need not be a mass eigenstate. This is

familiar from the standard model, in which the U(1)Y generator mixes with the diagonal

generator of SU(2)W to form the massive Z and the massless photon. It is typically most

convenient to calculate in the mass eigenbasis, working with “effective generators” that are

linear combinations of the original generators. With this strategy, one can quickly work

out the result for a general Higgsing of a product of simple Lie groups,

∆m2
0 =

∣∣∣∣
F

M

∣∣∣∣
2 ∑

a

(
αa

2π

)2 ∑

j

T j
a,QT

j
a,Q

∑

i

na(ri)f(xi, ya,j), ya,j =

∣∣∣∣
Mjj

a

M

∣∣∣∣
2

. (4.10)

The effective generators of each group are given by T j = OjkT k, where O is the

orthogonal matrix that diagonalizes the mass matrix of the gauge fields. In matrix notation,

1

2
W T MW =

1

2
W TOTOMOTOW =

1

2
(OW )TM(OW ) ≡

1

2
WTMW, (4.11)

where M is diagonal, and W is the vector of mass eigenstates. The effective generators

emerge when the covariant derivative is written in this basis. Note that in the case of full

degeneracy, Mjk = mW δjk, summing over j in (4.10) reproduces the familiar quadratic

Casimir, OjkT kOjlT l = T kT lδkl = C(rq).

4.4 Case 4 — Allowing for U(1)’s

If the gauge group includes a U(1), the potential for a new complication emerges. Fortu-

nately, the problem and its solution are found in the simple case of a product of two U(1)’s.

The result for an arbitrary Higgsing of an arbitrary gauge group is easily obtained from

this case; though we will not attempt to write a formula for the general case.

Letting the gauge superfields have masses mW and m̃W and couplings g and g̃, one

expects in general to have a contribution proportional to g2g̃2. The presence of different

gauge fields within a diagram stems from the fact that the effective generators need not

be traceless, so the trace that usually produces the Dynkin index no longer has to vanish

for generators of different groups. The sum of diagrams proportional to g2g̃2 yields a new

function, h(x, y, ỹ), where x = F/M2, y = m2
W /M2, z = m̃2

W /M2, and h(x, y, y) = f(x, y).

This function is given in the appendix. The full result for the case of two U(1)’s is

∆m2
0 =

∣∣∣∣
F

M

∣∣∣∣
2 ∑

i

[(
α

2π

)2

q2
i q

2
Qf(xi, y) +

(
α̃

2π

)2

q̃2
i q̃

2
Qf(xi, ỹ) + 2

αα̃

(2π)2
qiq̃iqQq̃Qh(x, y, ỹ)

]
,

(4.12)
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Figure 4: From top to bottom, f(x, 0), f(x, .1), f(x, 1), f(x, 10), and f(x, 100)

where the q’s are the various charges of the fields in what is hopefully an obvious notation.

In general, one simply needs to transform to the mass eigenbasis and identify all of the

U(1)′s that result. Each pair will have a contribution of this form.

5. Implications

The mass spectrum provides some of the key predictions for the potential discovery

of GMSB. The masses calculated here (renormalized to the scale of MSSM sparticle

masses [20]) predict relationships among particle masses given by simple group theory

factors and known functions of scales. Our results reproduce those of standard gauge me-

diation [12] in the appropriate limit, but provide a new set of predictions if the mediating

group is Higgsed. For example, if the messenger scale were low enough to make the mass

of the SU(2)W fields non-negligible, one would find sfermions with lower than expected

masses. Additional mediating gauge fields, however, lead to higher masses.

In ordinary gauge mediation the ratios of gaugino and sfermion masses depend pri-

marily on the matter content of the messenger sector, but they are also highly sensitive

to the gauge structure. The modification of the spectrum can be particularly interesting

if the messenger scale is near a Higgsing scale. In that case, the massive gauge fields

give significant contributions and cannot be approximated as massless (see figure 4). In

this scenario, the ratio of gaugino and scalar masses would not readily yield the effective

messenger number. Assuming ordinary gauge mediation, one would find that it is not an

integer.

Of course, a proximity of scales need not be an accident. In [21], for example, the

breaking-scale of a gauged Peccei-Quinn symmetry and the supersymmetry-breaking scale

coincide. And in the ISS model [22], all scales are set by a single dimensionful parameter.

Recall that our analysis applies to the spectrum and interactions that result from (4.1).

The ISS model is of this form. It has messengers with masses, m2
± = |hµ|2 ± |hµ|2 and a

supersymmetric Higgsing of the gauge group with mW = gµ. This gives y = g/h, which is

naturally of order one. The model also has x = 1, so a small-x approximation cannot be

trusted.

– 7 –
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A. The two-loop calculation

There are ten diagrams relevant to the computation of the lowest-order scalar mass cor-

rection. They are shown in figure 5. The first eight are the standard contributions. The

final two arise from interactions with the scalar, C, of the massive vector multiplet. For

U(1) × U(1)′, we have

L ⊃ −gmW C(iφ∗
+φ− − iφ+φ∗

− + |q|2), (A.1)

where φ± has mass-squared M2 ± F , and q is a scalar that will get a radiative mass.

The charge assignments should be clear. Of course, there are many more diagrams that

do not involve the messengers, but their contributions sum to zero. In fact, Diagram 5

is independent of supersymmetry breaking, but we prefer to compute with the complete

messenger multiplet. This gives a finite result and thus a check on the calculation. There

are no IR divergences. Dimensional reduction [23] is used to regulate the UV divergences.

In this context, dimensional reduction simply amounts to performing all Lorentz algebra

in four dimensions and then evaluating the resulting scalar integral in 4 − 2ǫ dimensions.

In evaluating the integrals, we expressed each integral as a sum of “master integrals”

— integrals with momentum-independent numerators. This method is discussed in more

detail in [24]. In their notation, the most general two-loop master integral is

〈m11,m12, . . . |m21,m22, . . . |m31,m32, . . .〉 (A.2)

≡
∏

i,j,k

∫
ddk

(2π)d
ddq

(2π)d
1

(k2 + m2
1i)(q

2 + m2
2j)[(k + q)2 + m2

3k]
. (A.3)

In our calculation, only the following two integrals are needed,

〈m1|m2|m3〉 =

∫
ddk

(2π)d
ddq

(2π)d
1

(k2 + m2
1)(q

2 + m2
2)[(k + q)2 + m2

3]
, (A.4)

〈m1,m1|m2|m3〉 =

∫
ddk

(2π)d
ddq

(2π)d
1

(k2 + m2
1)

2(q2 + m2
2)[(k + q)2 + m2

3]
. (A.5)

Clearly these integrals are not independent; the second is a derivative of the first. In turns

out, however, that the dimensionless integral (A.5) is the easier integral to evaluate, so it

is useful to have the inverse identity,

〈m1|m2|m3〉 =
m2

1〈m1,m1|m2|m3〉 + m2
2〈m2,m2|m3|m1〉 + m2

3〈m3,m3|m1|m2〉

3 − d
. (A.6)

– 8 –
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The single integral that we need is

〈m1,m1|m2|m3〉 =
1

2(4π)4

[
1

ǫ2
+

1−2 ln m̄2
1

ǫ
+1+

π2

6
− 2 ln m̄2

1+2 ln2 m̄2
1 + 2F

(
m2

2

m2
1

,
m2

3

m2
1

)]
,

(A.7)

where m̄2 = m2eγ/4π, and the function of the mass ratios is3

F (a, b) = −
1

2
ln2 a − Li2

(
a − b

a

)
(A.8)

+

(
a + b − 1

2r
−

1

2

)[
Li2

(
b − a

x+

)
−Li2

(
a−b

1−x+

)
−Li2

(
1−x+

−x+

)
+Li2

(
−x+

1−x+

)]

+

(
a + b − 1

2r
+

1

2

)[
Li2

(
b − a

x−

)
−Li2

(
a−b

1−x−

)
−Li2

(
1−x−

−x−

)
+Li2

(
−x−

1−x−

)]
,

having defined the parameters,

r =
√

1 − 2(a + b) + (a − b)2, x+ =
1

2
(1 + b − a + r), x− =

1

2
(1 + b − a − r),

and having made use of the dilogarithm,

Li2(z) =

∫ 1

0
dt

ln(1 − zt)

t
. (A.9)

Finally, we have all the ingredients we need. For the case a single supersymmetric

vector superfield with mass mW , the decomposition of each diagram into master integrals is

shown before figure 5. The parameter, ξ, determines the gauge. The absence of dependence

on ξ in the sum of diagrams provides another check on the computation. The more general

case with different vector superfields with masses mW and m̃W follows. In evaluating this

mixed contribution, one finds that the expressions for individual diagrams can be unwieldy

when expressed in terms of two gauge-fixing parameters. It is worth calculating with the

parameters for the sake of checking the calculation, but a lot of work can be saved by adding

diagrams at intermediate stages. This has been done. The gauge-invariant combinations

are shown.

We would like to note that the vanishing of Diagram 6 is a rather robust result, though

the authors know of no principle requiring it to be zero. In particular, one can allow each

gauge bosons to have arbitrary mass and to be in an arbitrary gauge. Using four-component

spinors, the diagram is found to be proportional to

∫
ddk

(2π)d
ddq

(2π)d
Tr[kµ∆µν(k)γν∆1/2(k + q)γρ∆1/2(q)∆ρσ(k)kσ∆0(k)] (A.10)

3This corrects a typo in [24]. Their simplified form of this function is correct. We prefer the unsimplified

form because it presents fewer numerical complications.
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where

∆µν(k) =
−i

k2 − m2
W

[
gµν −

(1 − ξ)kµkν

k2 − ξm2
W

]
, (A.11)

∆̃µν(k) =
−i

k2 − m̃2
W

[
gµν −

(1 − ξ̃)kµkν

k2 − ξ̃m̃2
W

]
,

∆1/2(k) =
i(/k + mf )

k2 − m2
f

,

∆0(k) =
i

k2
. (A.12)

A little algebra shows that (A.10) can be written as

∫
ddk

(2π)d
ddq

(2π)d
Tr[/k(/k + /q + mf )/k(/q + mf )]f(k2)

[(k + q)2 − m2
f ](q2 − m2

f )
, (A.13)

for a function, f(k2), which contains all of the information about the gauge bosons. The

rest of the integral is simplified with the use of the identity,

Tr[/k(/k+/q+m2
f )/k(/q+m2

f)] = 4(k ·q)[(k+q)2−m2
f ]−4(k ·q)(q2−m2

f)−4k2(q2−m2
f). (A.14)

If this is put back into the integral, and the change of variables, q → k + q, is made

in the first term, one finds that the second and third terms are exactly canceled, and the

integral vanishes.

Finally, the sum of unmixed diagrams normalized so that f(0, 0) = 1 gives the function

in (2.3):

f(x, y) =
1

x2

[
F (1, y) + (1 + y)F

(
1

y
,
1

y

)
− F (1 + x, y) +

1

2
(1 + x)F

(
1,

y

1 + x

)
(A.15)

−(1 + x)F

(
1

1 + x
,

y

1 + x

)
+

1

2
(1 + x)F

(
1 − x

1 + x
,

y

1 + x

)
+(x−2y)F

(
1 + x

y
,
1

y

)

−(1 + x − 2y)F

(
1 + x

y
,
1 + x

y

)
+

y

2
F

(
1 + x

y
,
1 − x

y

)]
+ (x → −x),

and the sum of the mixed diagrams gives,

h(x, y, z) =

{
1

2x2(y − z)

[
2(2 + y)F (1, y) + (2 + y)yF

(
1

y
,
1

y

)
+ 2(x − y)F (1 + x, y)

−(1 + x)(4 + 4x − y)F

(
1,

y

1 + x

)
+ 2(1 + x)(x − y)F

(
1

1 + x
,

y

1 + x

)

+(1 + x)yF

(
1 − x

1 + x
,

y

1 + x

)
+ 2(x − y)yF

(
1 + x

y
,
1

y

)
(A.16)

−(4+4x−y)
y

2
F

(
1+x

y
,
1+x

y

)
+

y2

2
F

(
1+x

y
,
1−x

y

)]
+(x → −x)

}
+(y → z),

– 10 –
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Diagram 1 Diagram 2

Diagram 3 Diagram 4

Diagram 5 Diagram 6

Diagram 7 Diagram 8

Diagram 9 Diagram 10

Figure 5: The two-loop diagrams contributing to MSSM scalar masses

Unmixed diagrams.

Diagram 1 = 2ξ2〈m+〉〈mW ,mW 〉 + 2ξ2〈m−〉〈mW ,mW 〉

Diagram 2 = −2ξ2〈m+〉〈mW ,mW 〉 − 2ξ2〈m−〉〈mW ,mW 〉

Diagram 3 = −2(3 + ξ2)〈m+〉〈mW ,mW 〉 − 2(3 + ξ2)〈m−〉〈mW ,mW 〉

Diagram 4 = 2(1 + ξ2)〈m+〉〈mW ,mW 〉 + 2(1 + ξ2)〈m−〉〈mW ,mW 〉

−〈m+|m+|mW 〉 − 〈m−|m−|mW 〉

−(4m2
+ − m2

W )〈m+|m+|mW ,mW 〉 − (4m2
− − m2

W )〈m−|m−|mW ,mW 〉

Diagram 5 = 8〈mf 〉〈mW ,mW 〉 − 4〈mf |mf |mW 〉 + (8m2
f + 4m2

W )〈mf |mf |mW ,mW 〉

Diagram 6 = 0

Diagram 7 = −2〈m+|m−|0〉

– 11 –
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Diagram 8 = −8〈mf 〉〈mW ,mW 〉 + 4〈m+〉〈mW ,mW 〉 + 4〈m−〉〈mW ,mW 〉

+4〈m+|mf |mW 〉 + 4〈m−|mf |mW 〉

+(4m2
+ − 4m2

f − 4m2
W )〈m+|mf |mW ,mW 〉

+(4m2
− − 4m2

f − 4m2
W )〈m−|mf |mW ,mW 〉

Diagram 9 = 4〈m+|m−|0〉 − 4〈m+|m−|mW 〉

Diagram 10 = −2〈m+|m−|0〉 + 2〈m+|m−|mW 〉 + 2m2
W 〈m+|m−|mW ,mW 〉 (A.17)

Mixed diagrams.

Diagram 1 + Diagram 3 = −6〈m+〉〈mW , m̃W 〉 − 6〈m−〉〈mW , m̃W 〉 (A.18)

Diagram 2 + Diagram 4 = 2〈m+〉〈mW , m̃W 〉 + 2〈m−〉〈mW , m̃W 〉

−
1

2
〈m+|m+|mW 〉 −

1

2
〈m+|m+|m̃W 〉

−
1

2
〈m−|m−|mW 〉 −

1

2
〈m−|m−|m̃W 〉

−

(
4m2

+ −
1

2
m2

W −
1

2
m̃2

W

)
〈m+|m+|mW , m̃W 〉

−

(
4m2

− −
1

2
m2

W −
1

2
m̃2

W

)
〈m−|m−|mW , m̃W 〉

Diagram 5 = 8〈mf 〉〈mW , m̃W 〉 − 2〈mf |mf |mW 〉 − 2〈mf |mf |m̃W 〉

+

(
8m2

f + 2m2
W + 2m̃2

W

)
〈mf |mf |mW , m̃W 〉

Diagram 6 = 0

Diagram 7 = −2〈m+|m−|0〉

Diagram 8 = −8〈mf 〉〈mW , m̃W 〉 + 4〈m+〉〈mW , m̃W 〉 + 4〈m−〉〈mW , m̃W 〉

+2〈m+|mf |mW 〉 + 2〈m+|mf |m̃W 〉

+2〈m−|mf |mW 〉 + 2〈m−|mf |m̃W 〉

+(4m2
+ − 4m2

f − 2m2
W − 2m̃2

W )〈m+|mf |mW , m̃W 〉

+(4m2
− − 4m2

f − 2m2
W − 2m̃2

W )〈m−|mf |mW , m̃W 〉

Diagram 9 = 4〈m+|m−|0〉 − 2〈m+|m−|mW 〉 − 2〈m+|m−|m̃W 〉

Diagram 10 = −2〈m+|m−|0〉 + 〈m+|m−|mW 〉 + 〈m+|m−|m̃W 〉

+m2
W 〈m+|m−|mW , m̃W 〉 + m̃2

W 〈m+|m−|mW , m̃W 〉
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